
Best Practices

20 CROSSTALK The Journal of Defense Software Engineering January 2002

Anumber of Department of Defense
(DoD) organizations are responding to

the DoD Evolutionary Acquisition
Initiative in DoDI 5000.2 [1] by organizing
evolutionary increments of capability
around the objective of developing and
fielding each increment within a fixed
schedule (frequently 18 or 24 months) or
fixed budget. Examples are new capabilities
or major upgrades for such software-inten-
sive systems as Command, Control, and
Communications Interoperability (C3I),
logistics, or combat platform electronics
suites.

The usual approach for achieving this
objective follows this pattern:
1. Determine the best-possible set of fea-

tures that can be developed and fielded
within the available schedule and/or
budget.

2. Contract to develop and field this fea-
ture set within the available schedule
and/or budget.

3. Monitor the contractor’s progress in
achieving the objectives within the
schedule and/or budget.

This is the usual interpretation of DoD’s
current Cost as Independent Variable
(CAIV) approach. Unfortunately, step four
of this scenario usually involves finding that
the available schedule and/or budget are
insufficient, and that the existing contract
constraints and architectural commitments
preclude finding a way to field an acceptable
capability within the available schedule
and/or budget.

Is this really the usual outcome? Sadly,
yes, both in government and commercial
software acquisition. For example, the
Standish Report [2] found that 84 percent
of the software-intensive system projects it
surveyed either overran their budgets and
schedules or were cancelled before comple-
tion. The average overruns on these proj-
ects were 189 percent of planned cost and
222 percent of planned schedule. The com-

pleted overrun projects delivered an average
of only 61 percent of the originally speci-
fied features. The Standish Report does not
address the effect on delivered software
quality, but our analysis of similar projects
indicates similar problems with delivered
defect density (nontrivial defects per func-
tion point or per thousands of source lines
of code).

The Standish Report’s and our analyses
of the major root causes of this problem
are:
• Schedule and budget estimates can be

(sometimes wildly) optimistic.
• Even if “most likely” estimates are used,

the definition of most likely means that
they will be overrun in roughly half of
the projects.

• To maximize the probability of success-
ful delivery, the contractor will often use
a point-solution architecture to accom-
modate the specified features. When the
inevitable threat, combat platform, fea-
ture priority, or technology changes
come, they are hard to accommodate
within the point-solution architecture.

Using SAIV, CAIV, and
SCQAIV as Process Models
In our earlier CrossTalk articles on
the Spiral Model [3] and Model-Based

(System) Architecting and Software
Engineering (MBASE) [4], we showed
that these were actually process model
generators for the acquisition of software
intensive systems. They use risk consider-
ations to determine the most appropriate
sequence of activities to perform (among
specification, prototyping, simulation,
benchmarking, increments of develop-
ment, etc.) in order to achieve the most
cost-effective system capability within var-
ious resource constraints such as cost,
schedule, personnel, and platform charac-
teristics.

In this article, we show how you can
use the MBASE process framework to
generate a particularly attractive family of
acquisition process models for delivering
user-satisfactory systems under schedule,
cost, and quality constraints.

The risk-driven MBASE-Spiral
approach uses the risk of schedule or cost
overrun to invert the usual software-inten-
sive-system acquisition process. Either
schedule, cost, or some combination of
schedule, cost, and quality becomes the
independent variable, and the lower-prior-
ity features become the dependent vari-
able. This requires several sub-processes:
• Determination of a top-priority core

capability and quality level strongly
assured to be achievable within the
schedule-cost-quality constraints.

• User expectations management and
continuing update of feature priorities.

• Architecting the system for ease of
dropping borderline-priority features
and future addition of lower-priority
features.

• Careful progress monitoring and cor-
rective action to keep within cost-
schedule-quality constraints.
In this article, we next present the six

major steps of the Schedule/Cost/
Schedule-Cost-Quality as Independent
Variable (SAIV/CAIV/SCQAIV) process

Using the Spiral Model and MBASE to Generate New
Acquisition Process Models: SAIV, CAIV, and SCQAIV

Dr. Barry Boehm, Dr. Dan Port, LiGuo Huang, and Winsor Brown
University of Southern California

In this article, we show how you can use the MBASE process framework to generate a family of acquisition process models
for delivering user-satisfactory systems under schedule, cost, and quality constraints. We present the six major steps of the
Schedule/Cost/Schedule-Cost-Quality as Independent Variable (SAIV/CAIV/SCQAIV) process using SAIV and a
representative Department of Defense (DoD) Command, Control, and Communications Interoperability application as con-
text. We then summarize our experience in using SAIV on 26 University of Southern California electronic services proj-
ects, followed by discussions of SAIV/CAIV/SCQAIV application in the commercial and defense sectors, of model appli-
cation within the DoD acquisition framework, and of the resulting conclusions.

“... 84 percent of the
software-intensive system

projects it [Standish]
surveyed either overran

their budgets and
schedules or were

cancelled ...”

January 2002 www.stsc.hill.af.mil 21

Using the Spiral Model and MBASE to Generate New Acquisition Process Models: SAIV, CAIV, and SCQAIV

using SAIV and a representative DoD C3I
application as context. We then summa-
rize our experience in using SAIV on 26
University of Southern California (USC)
electronic services projects, 24 of which
have successfully delivered systems with
high client-satisfaction ratings on a fixed
schedule. This is followed by discussions
of SAIV/CAIV/SCQAIV application in
the commercial and defense sectors, of
model limitations and extensions, and of
the resulting conclusions.

The SAIV Process Model
The key to successful SAIV practice is to
strategically plan through all life-cycle
areas to meet a delivery date. SAIV is
defined by explicitly enacting the following
six process elements:
1. Manage expectations by establishing a

stakeholders’ shared vision of achiev-
able objectives.

2. Prioritize system features.
3. Estimate subsets of features that can

be developed with high confidence
within the available schedule.

4. Establish a coherent set of core capa-
bilities with borderline features to be
added if possible, and a software/sys-
tem architecture to easily accommo-
date borderline features.

5. Plan development increments, includ-
ing a high-confidence core capability
and next-priority subsets.

6. Execute development plans with care-
ful change and progress monitoring
and control processes.
The MBASE process model genera-

tor is used to generate a SAIV process
model suitable for a particular project.
Figure 1 shows the SAIV version of the
Win-Win Spiral Model. The process
models for CAIV and SCQAIV are
essentially the same except for the defini-
tion of the radial dimension of the spi-
rals. For CAIV projects, the spiral’s tradi-
tional radial dimension of cumulative
cost is used. For SAIV projects, the radi-
al dimension is cumulative calendar time.
Either cost or time can be used for
SCQAIV, with the other objective and
desired quality acting as constraints.

Figure 1 also shows the major SAIV
process elements to be described next.
These are executed concurrently within
the spirals. As discussed in our updated
spiral model article [3], feedback and iter-
ation of previous-cycle results are part of
the spiral process, but are omitted from
Figure 1 for simplicity.

The milestone content and pass-fail
criteria for the Life Cycle Objectives
(LCO), Life Cycle Architecture (LCA),
and Initial Operational Capability (IOC) in

Figure 1 were described in detail in
December CrossTalk’s article on the
Spiral Model and MBASE [4]. They are
also the major development milestones in
the Rational Unified Process [5, 6]. We will
elaborate the LCA milestone content in a
following section. The SAIV/CAIV/
SCQAIV family of process models adds a
further milestone in Figure 1: the Core
Capability Demonstration (CCD). It will
be detailed, too, in later sections.

A Representative C3I System
We now elaborate and illustrate the six
SAIV steps in the context of a represen-
tative C3I system. The current system
has three major upgrade requirements:
changing to a Web-based operation;
changing to an XML-based interoper-
ability scheme; and adding a new weath-
er-impact capability to support better
operational planning, task planning, and
battle management decision making. A
new fielded capability is needed in 19
months to maintain compatibility with
other interoperating systems transition-
ing to the Web and XML at that time.

Shared Vision and Expectations
Management
As graphically described in Death March
[7], many software projects lose the
opportunity to assure a rapid, on-time
delivery by inflating client expectations
and over promising on delivered capabil-
ities. The first step in the SAIV process
model is to avoid this by obtaining stake-
holder agreement that meeting a fixed
schedule for delivering the system’s IOC
is the most critical objective, and that the
other objectives such as the IOC feature
content can be variable, subject to meet-
ing acceptable levels of quality and post-
IOC scalability.

For the example C3I system, the 19-

month IOC milestone is clearly critical for
interoperability. Early meetings of the sys-
tem’s integrated product team should
emphasize that meeting this milestone may
be incompatible with stakeholders getting
all the features they want.

Feature Prioritization
With MBASE at USC, stakeholders use
the USC/GroupSystems.com EasyWin-
Win requirements negotiation tool [8] to
converge on a mutually satisfactory (win-
win) set of project requirements. One step
in this process involves the stakeholders
prioritizing the requirements by assessing
their relative importance and difficulty,
each on a scale of zero to 10. This process
is carried out in parallel with initial system
prototyping, which helps ensure that the
priority assessments are realistic.

Easy WinWin has been used success-
fully for DoD software applications [9].
However, other collaboration tools or
even manual group-meeting techniques
can be used for this step. In our C3I
example, the stakeholders rate the Web
and XML capabilities higher-priority
based on interoperability essentials, but
agree that Weather capabilities are impor-
tant also.

Schedule Range Estimation
The developers then use a mix of expert
judgement and parametric cost modeling
to determine how many of the top-priori-
ty features can be developed in 24 weeks
under optimistic and pessimistic assump-
tions. For the parametric model, we use
Constructive Cost Model (COCOMO) II,
which estimates 90 percent confidence
limits on both cost and schedule [10].
Other models such as Software Life-Cycle
Model (SLIM) [11], System Evaluation
and Estimation of Resources (SEER) [12],
and Knowledge PLAN [13] provide simi-

Figure 1: Mapping of SAIV Spiral Process Elements Onto Win-Win Model

22 CROSSTALK The Journal of Defense Software Engineering January 2002

lar capabilities.
Table 1 summarizes the results of a

COCOMO II analysis of the example
C3I system. It shows the fastest achiev-
able schedules for completing either the
Web or XML capabilities (each require
12 months at best); both the Web and
XML; or all three capabilities (Weather
requires 14 months at best). The two
columns show the most likely schedule
(achievable 50 percent of the time) and
the 90-percent confidence schedule
(achievable 90 percent of the time).

The stakeholders see that all three
capabilities can be achieved in 19 months
in the most likely estimate, but are con-
cerned that this means that the 19-month
schedule will be overrun about half the
time; furthermore, that with 90 percent
confidence it will take up to 24 months, an
unacceptable outcome. However, the Web
and XML capabilities could be completed
in 19 months 90 percent of the time.

Architecture and Core Capability
Determination
The most serious mistake a project can
make at this point is just to pick the top-
most priority features with 90 percent
confidence of being developed in 19
months. This can cause two main prob-
lems: producing an IOC with an inco-
herent and incompatible set of features,
and delivering these without an underly-
ing architecture supporting easy scalabil-
ity up to the full feature set and work-
load.

First, the core capability must be
selected so that its features add up to a
coherent and workable end-to-end oper-
ational capability. Second, the remainder
of the lower-priority IOC requirements
and subsequent evolution requirements
must be used in determining a system
architecture facilitating evolution to full
operational capability. Still the best
approach for achieving this is to use the
Parnas information-hiding approach to
encapsulate the foreseeable sources of
change within modules [14]. The archi-
tecting process may take two or more
win-win spiral cycles of prototyping,
commercial off-the-shelf (COTS) prod-
uct evaluation, and stakeholder renegoti-

ation to reconcile the system’s product,
process, property, and success models
into a LCA package.

The C3I system stakeholders deter-
mine that the core capability should
include the critical subsets of the Web,
XML, and Weather capabilities, rather
than all of the Web and XML capabilities.
This is both because the Weather deci-
sion support is much needed, and
because it would be infeasible to add a
significant Weather capability in just the
time left after the core capability was
completed.

Incremental Development
Planning
The LCA package includes an incremen-
tal development plan (item 5 in Figure 1,
page 21) indicating the schedules and
pass/fail criteria for the core capability
(item 6a), IOC (item 6b), and perhaps
other milestones.

Since the core capability has only a 90
percent assurance of being completed in
19 months, this means that about 10 per-
cent of the time, the project will have to
stretch to deliver the core capabilities in
19 months, perhaps with some per-
former overtime or completion bonuses,
or occasionally by further reducing the
top-priority feature set. In the most like-
ly case, however, the project will achieve
its core capability with about 20 percent
to 30 percent of the schedule remaining.
This time can then be used to add the
next-highest priority features into the
IOC (again, assuming that the system
has been architected to facilitate this).

An important step at this point is to
provide the operational stakeholders
(users, operators, maintainers) with a
core capability demonstration. Often,
this is the first point at which the realities
of actually taking delivery of and living
with the new system hit home, and their
priorities for the remaining capabilities
may change.

Also, this is an excellent point for the
stakeholders to reconfirm the likely final
IOC content, and to synchronize plans
for conversion, training, installation and
cutover from current operations to the
new IOC.

Development Execution; Change
and Progress Monitoring and
Control
As progress is being monitored with
respect to plans, there are three major
sources of change that may require
reevaluation and modification of the pro-
ject’s plans:
1. Schedule slips. Traditionally, these can

happen because of unforeseen techni-
cal difficulties, staffing difficulties, cus-
tomer or supplier delays, etc.

2. Requirements changes. These may
include changes in priorities, changes in
current requirements, or needs for new
high-priority requirements.

3. Project changes. These may include
staffing changes, COTS changes, or
new marketing-related tasks (e.g., inter-
im sponsor demos).

In some cases, these changes can be
accommodated within the existing plans.
If not, there is a need to rapidly renego-
tiate and restructure the plans. If this
involves the addition of new tasks on the
project’s critical path, some other tasks
on the critical path must be reduced or
eliminated. There are several options for
doing this, including dropping or defer-
ring lower-priority features, reusing exist-
ing software, or adding expert personnel.
In no cases should new critical-path tasks
be added without adjustments in the
delivery schedule or other schedule driv-
ers.

By following these guidelines, the C3I
project should be able to overcome the
usual sources of change above and suc-
cessfully deliver a core capability within 19
months, often with most of the full set of
capabilities added as well. However,
although SAIV can significantly improve
your success rate, it can’t guarantee success
in all situations, such as major budget cuts
or radical project redirections. In these
cases, budget, schedule, and core capability
content will need to be significantly rene-
gotiated. Some examples of failed SAIV
projects are given in the next section.

SAIV Experience
The SAIV process model is described in
terms of a representative set of SAIV
applications: USC’s annual series of real-
client campus e-services projects [15, 16].
These projects are largely Web-based
applications developed by five-person
master’s-student teams, using the
MBASE guidelines [17] and the MBASE
Electronic Process Guide [18].

The teams’ main challenges are to
develop a LCO package and a LCA pack-
age, described below, for a USC

Capabilities Most Likely
(50% confidence)

Either Web or XML 12 15
Both Web and XML 15 19
Web, XML, and Weather 19 24

Fastest Achievable Schedule (months)
90% confidence

Table 1: Fastest Achievable Schedules for C3I Capabilities

Best Practices

January 2002 www.stsc.hill.af.mil 23

Using the Spiral Model and MBASE to Generate New Acquisition Process Models: SAIV, CAIV, and SCQAIV

Information Services Division client’s
application in 12 weeks during the fall
semester, and to develop and transition
an IOC in 12 weeks during the spring
semester. These are extreme examples of
schedule being the independent variable
since the USC semester schedule is fixed
and the students disappear (to graduation
or summer jobs) at the end of the spring
semester.

The critical success factors of the
MBASE process model involve the con-
current development of several initial arti-
facts: an operational concept description,
a requirements definition, an architecture
description, a life-cycle plan, a feasibility
rationale, and one or more prototypes.
These are evaluated at two major pass/fail
points, the LCO and the LCA milestones.
Both milestones use the same primary
pass-fail criterion: If we build the system
to the given architecture, it will satisfy the
requirements, support the operational
concept, be faithful to the prototypes, and
be buildable within the processes, budgets,
and schedules in the plan.

For the LCO milestone, this criterion
must be satisfied for at least one choice
of architecture, along with demonstra-
tion of a viable business case for the sys-
tem and the expressed concurrence of all
the success-critical stakeholders. For the
LCA milestone, the pass-fail criterion
must be satisfied for the specific choice
of architecture and COTS components
to be used for the system, along with
continued business case viability and
stakeholder concurrence, plus elimina-
tion of all major project risks or coverage
of the risks in a risk management plan.

One of our primary goals in the proj-
ect course is to give the students experi-
ence in risk management [19]. Our risk
management lectures and homework exer-
cises emphasize a list of the 10 most seri-
ous risk items: Personnel risks are number
one, and budget-schedule risks are num-
ber two. The student projects’ risk man-
agement plans must show how their team
will avoid the risks of delivering an unsat-
isfactory LCA package in the first 12
weeks (fall semester), and of unsatisfacto-
rily delivering and transitioning an IOC in
the second 12 weeks (spring semester).
The MBASE guidelines recommend that
they adopt the SAIV model described in
an earlier section; so far, all the projects
have done this.

Also, we work in advance with the
USC e-services clients to sensitize them
to the risks of over-specifying their set of
desired IOC features, and to emphasize
the importance of prioritizing their
desired capabilities. This generally leads

to a highly collaborative win-win negotia-
tion of prioritized capabilities, and subse-
quently to a mutually satisfactory core
capability to be developed as a low-risk
minimal IOC.

The projects’ monitoring and control
activities include the following:
• Development of a top-N project risk

item list that is reviewed and updated
weekly to track progress in managing
risks (N is usually between five and 10).

• Inclusion of the top-N risk item list in
the project’s weekly status report.

• Management and technical reviews at
several key milestones.

• Client reviews at other client-critical
milestones such as the core capability
demonstration.

The use of SAIV and these monitoring
and control practices have led to on-time,
client-satisfactory delivery and transition
of 24 of the 26 products developed to
date. One of the two failures was in our
first year, when we tried to satisfy three
clients by merging their image archive
applications into a single project; we
underestimated the complexity of the
merge. As a result, “merging multiple
applications” has become one of the
major sources of project risk that we
consider.

The second failure happened recently
when a project that appeared to be on
track at its transition readiness review,
simply did not implement its transition
plan when its client suddenly had to go
out of town. We were not aware of this
until the client returned after the semes-
ter was over and the students had disap-
peared to graduation and summer jobs.
We have since revised our system of
closeout reviews to eliminate this “blind
spot” and related problem sources.

On the other 24 projects, client evalu-
ations have been uniformly quite posi-
tive, averaging about 4.4 on a scale of
one to five. A particularly frequent client
evaluation comment has been their pleas-
ure in being able to synchronize product
transition on a specific fixed date with
their other transition activities. Another
pleasant surprise was the effect on
clients’ review timeliness: “You mean if I
evaluate the prototype right away, I’ll get
more features in my IOC?” The e-servic-
es project artifacts can be reviewed on
the class Web page
<http://sunset.usc.edu/classes>.

E-Commerce Projects
One of our industrial affiliates, C-Bridge,
Inc., uses a very similar SAIV process
model, which enables them to consistently
deliver e-commerce systems on fixed

schedules between 13 and 26 weeks. Their
Rapid Value approach uses milestones very
similar to MBASE’s LCO, LCA, and IOC
milestones; their counterpart phases are
named define, design, develop, and deploy.
They use similar approaches in working in
advance with their clients to ensure a
workable SAIV scope and schedule, and in
anticipating and pre-working potential
transition problems to client-based opera-
tions and maintenance [20].

The CAIV and SCQAIV Process
Models
Simply substituting “cost” for “schedule”
in the SAIV process model described
above provides you with an equally effec-
tive way to use CAIV as a process model.
The SCQAIV model is a straightforward
extension of CAIV and SAIV. It involves
setting the system’s quality goals (e.g., a
delivered defect density of 0.3 nontrivial
defects per thousand source lines of code
(KSLOC), or of 0.03 nontrivial defects
per function point), and tracking
progress with respect to achieving the
desired combination of schedule, cost, or
quality goals.

If any of these goals becomes
unachievable in delivering the current fea-
ture set, the project must drop enough
lower-priority features to make the combi-
nation of goals achievable. There may be
limits to the project’s ability to do this, such
as insufficient schedule to develop even a
viable core capability. We have discussed
this situation via a production-function
perspective in [21].

DoD Acquisition Framework
In situations such as post-deployment
upgrades and pre-planned product
improvements, DoD can and often has
implemented versions of SAIV/CAIV/
SCQAIV as smoothly as they are done
commercially. Frequently, in such situa-
tions, the organization’s software mainte-
nance budget and release cycle are rela-
tively fixed. The biggest risk is to prom-
ise too much within these constraints,
leaving the sacrifice of quality as the only
way to meet budget and schedule. This
inevitably leads to degradations of the
software’s maintainability, operational fit-
ness, and future maintenance productivi-
ty.

Thus, a form of SCQAIV is the best
option for software maintenance in
which quality standards are set, infra-
structure upgrades are given appropriate
priorities, and lower-priority features are
shed to meet cost, schedule, and quality
objectives.

This approach is workable because

24 CROSSTALK The Journal of Defense Software Engineering January 2002

Best Practices

DoD’s operations and maintenance
acquisition practices are similar to their
commercial counterparts. Budgets are
generally not tied to premature promises
of delivered features, and there is usually
a long-term customer-supplier relation-
ship with a shared product vision among
the customer, supplier, and users. This
continuing relationship usually increases
mutual trust, the ability to share and
respect each other’s win conditions, and
the ability to negotiate and, when neces-
sary, readily adjust mutually satisfactory
or win-win agreements and priorities.

Competitive Development
In some cases, such as the Air Force
Electronic Systems Center’s Command
Center Product Line (CCPL) and within
classified-application organizations, DoD
customers have been able to create devel-
opment arrangements similar to the sta-
ble post-deployment support situation
described above. CCPL, for example,
developed a flexible contractual instru-
ment focused on creating user value
rather than pre-specified features, and
allowing in-process renegotiation of pri-
orities. It selected three contractors via
competitive source selection. The evalua-
tion criteria included track record on sim-
ilar developments, software Capability
Maturity Model® (CMM®) process matu-
rity, technical and management approach,
and demonstration of the approach via a
representative exercise.

Once selected, the contractors oper-
ated as a team with the customer, devel-
oping a strong shared vision for the
product line, and taking on new assign-
ments based on best-matched available
expertise, ensuring effective employment
of all three contractors’ resources. In this
situation, SAIV/CAIV/SCQAIV-type
approaches were highly feasible and
preferable.

In many cases, however, DoD organ-
izations must develop a new system
vision and set of acquisition parameters
(schedule, cost, quality attribute levels,
and feature scope) within a competitive
acquisition framework. Here, complete
multi-contractor shared vision develop-
ment is impractical, as developers will be
unwilling to share their competitive-dis-
criminator technology solutions with
competing developers.

Frequently, this leads acquisition
organizations to exclude developers from
participating in the creation of the shared
vision. This is highly risky, as the resulting
decision may exclude attractive developer
technology solutions. It may also leave
serious vision mismatches between the

customer, user, and selected developers,
making SAIV/CAIV/SCQAIV system
scoping and feature prioritization difficult
to achieve, particularly if the program’s
funding and schedule have been tied to a
particular set of delivered capabilities.

Unfortunately, there is no ideal solu-
tion to this dilemma. The most attractive
near-solution involves the use of multiple
competitive spiral cycles of system defi-
nition, with the number of competitors
being reduced from one cycle to the next.
The earlier cycles are shorter and less
expensive, making a larger number of

participants affordable. They can be run
as SAIV/CAIV procurements with equal
opportunity for each competitor. Some
care is necessary to avoid leaking com-
petitors’ key discriminators, but many
competitive DoD concept definition
efforts have achieved this.

These earlier cycles enable overall sys-
tem scoping and tradeoff analysis to be
performed, along with the evaluation of
readiness levels of key technologies via
prototyping, benchmarking, modeling
and simulation, etc. This also enables the
acquirers to evaluate the competing
developers’ capabilities and understand-
ing of the system context and objectives.

Some similar criteria to those used by
CCPL (track record, technical and man-
agement capabilities, concept definition
and evaluation performance) are used for
initial competitor selection and early
down-selection. Later down-selection cri-
teria increasingly involve development
capabilities such as process maturity and
realism of development plans, schedules,
and budgets. Here again, the final devel-
opment competition can fix the cost
and/or schedule, provide a prioritized
feature set, and compete on scope and
realism of feature set delivery plans.

All three services are making progress
toward mastering this kind of evolution-
ary acquisition in the context of the new
DoD 5000-series of acquisition regula-

tions [1]. These include the extensive use
of simulation and modeling in the
Army’s SMART program, the Air Force’s
Instruction 63-123, evolutionary acquisi-
tion of command and control systems
[22], use of downselected contractors’
expertise in other system life-cycle roles,
and service use of new contractual vehi-
cles such as cooperative research and
development agreements (CRADAs) and
the Defense Advanced Research Projects
Agency (DARPA)-originated “other
transactions” approach [22]. All of these
are compatible with and have been used
successfully with SAIV/CAIV/
SCQAIV-type approaches.

Conclusions
The six-step SAIV process model pre-
sented here has been used successfully on
24 of 26 e-services applications at USC,
and on a similar percentage of e-com-
merce applications at C-Bridge, to deliver
highly client-satisfactory applications on
a fixed schedule in a climate of rapid
change. Its 92 percent success rate com-
pares favorably with the 16 percent suc-
cess rate in the Standish Group’s survey
of current practice. There might be some
concern that student-team projects are
easier than professional-developer proj-
ects, but there is also a case that on-
schedule delivery is harder with teams of
people who are unfamiliar with each
other, with project practice, with the
clients, and with the applications domain
(all generally true for the USC e-services
projects).

The critical success factors of the
SAIV approach are:
• Working with stakeholders in advance

to achieve a shared product vision and
realistic expectations.

• Getting clients to develop and main-
tain prioritized requirements.

• Scoping the core capability to fit with-
in the high-payoff segment of the
application’s production function for
the given schedule.

• Architecting the system for ease of
adding and dropping borderline fea-
tures.

• Disciplined progress monitoring and
corrective action to counter schedule
threats.

The approach can also be applied to its
counterpart CAIV process model. It can
also provide a way to transform the cur-
rent dilemma, “Schedule, Cost, Quality:
Pick Any Two,” to “Schedule, Cost,
Quality: Pick All Three,” via the SCQAIV
version of the model whenever your
project is able to shed lower-priority fea-
tures to meet its SCQ objectives. Proven

“The six-step
SAIV process model

presented here has been
used successfully on

24 of 26 e-service
applications at

USC ...”

strategies are also available for applying
SAIV/CAIV/SCQAIV to competitive
DOD system acquisitions.◆

References
1. Department of Defense Instruction

5000.2. Operation of the Defense
Acquisition System. Sept. 2000,
<www.acq.ord.mil/ap/i50002p.doc>.

2. Standish Group. “CHAOS,” <www.
standishgroup.com/chaos.htm>.

3. Boehm, B., and W. Hansen. “The
Spiral Model as a Tool for Evolutionary
Acquisition,” CrossTalk, May 2001:
pp. 3-11.

4. Boehm, B., and D. Port. “Balancing
Discipline and Flexibility with the
Spiral Model and MBASE,”
CrossTalk, Dec. 2001.

5. Kruchten, P. The Rational Unified
Process. Addison-Wesley, 1998.

6. Royce, W.E. Software Project Manage-
ment: A Unified Framework. Add-
ison-Wesley, 1998.

7. Yourdon, E. Death March. Prentice
Hall, 1997.

8. Boehm, B., P. Gruenbacher, and R.
Briggs, eds. “Developing Groupware
for Requirements Negotiation:
Lessons Learned,” IEEE Software.

May/June 2001: pp. 46-55.
9. Saboe, M., P. Gruendacher, and P.

Kloska. “Experience with the WinWin
Process for Planning Software
Infrastructure and Technology,”
Proceedings, International Confer-
ence of Good Systems, 2002 (to
appear).

10. Boehm, B., C. Abts, A.W. Brown, S.
Chulani, B.Clark, E. Horowitz,
R.Madachy, D. Reifer, and B. Steece,
eds. Software Cost Estimation with
COCOMO II. Prentice Hall, 2000.

11. Putnam, L. “Software Life Cycle Model
(SLIM),” QSM, 2001, <www.qsm.
com>.

12. Galorath, D. SEER-SEM. Galorath,
Inc., 2001,<www.galorath.com>.

13. Jones, C. “Knowledge PLAN,”
Artemis/SPR, 2001, <www.spr.com>.

14. Parnas, D., “Designing Software for
Ease of Extension and Contraction,”
IEEE Trans. Software Engr. Mar.
1979: pp. 128-137.

15. Boehm, B., A. Egyed, J. Kwan, D. Port,
A. Shah, and R. Madachy, eds. “Using
the WinWin Spiral Model: A Case
Study.” IEEE Computer, July 1998:
pp. 33-44.

16. Boehm, B., A. Egyed, D. Port, A. Shah,

J. Kwan, and R. Madachy, eds. “A
Stakeholder Win-Win Approach to
Software Engineering Education,”
Annals of Software Engineering, Apr.
1999.

17. Boehm, B., D. Port, M. Abi-Antoun,
and A. Egyed, eds. Guidelines for
Model-Based Architecting and Soft-
ware Engineering (MBASE). Ver. 2.2.
USC-CSE, Feb. 2001, <http://
suset.usc.edu/Research/MBASE>.

18. Mehta, N., MBASE Electronic Process
Guide. USC-CSE, Sept. 1999, <http://
sunset.usc.edu/Research/MBASE>.

19. Port, D. and B. Boehm, eds.
“Educating Software Engineering
Students to Manage Risk,” Proceed-
ings, ICSE 2001, May 2001.

20. Madachy, R., A. Pan, and A. Arboleda,
eds. “Processes for Rapid Develop-
ment of Internet Applications,” LA
SPIN Presentation, 24 Jan. 2001.

21. Boehm, B., and A.W. Brown, eds.
“Mastering Rapid Delivery and Change
with the SAIV Process Model,”
Proceedings, ESCOM2001, Apr. 2001.

22. U.S. Air Force Instruction 63-123,
“Evolutionary Acquisition for C2
Systems,” Apr. 2000, <http://
afpubs.hq.af.mil>.

January 2002 www.stsc.hill.af.mil 25

Using the Spiral Model and MBASE to Generate New Acquisition Process Models: SAIV, CAIV, and SCQAIV

About the Authors

Daniel Port, Ph.D., is
a research assistant
professor of Computer
Science and an associ-
ate of the Center for
Software Engineering

at the University of Southern
California. He received a doctorate
degree from the Massachusetts
Institute of Technology, and a bache-
lor’s degree from the University of
California, Los Angeles. His previous
positions were assistant professor of
Computer Science at Columbia
University, director of Technology at
the USC Annenburg Center EC2
Technology Incubator, co-founder of
Tech Tactics, Inc., and a project lead
and technology trainer for NeXT
Computers, Inc.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-7275
Fax: (213) 740-4927
E-mail: dport@sunset.usc.edu

Barry Boehm, Ph.D.,
is the TRW professor
of software engineer-
ing and director of the
Center for Software
Engineering at the

University of Southern California. He
was previously in technical and man-
agement positions at General
Dynamics, Rand Corp., TRW, the
Defense Advanced Research Projects
Agency, where he managed the acquisi-
tion of more than $1 billion worth of
advanced information technology sys-
tems. Dr. Boehm originated the spiral
model, the Constructive Cost Model,
and the stakeholder win-win approach
to software management and require-
ments negotiation.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-8163
Fax: (213) 740-4927
E-mail: boehm@sunset.usc.edu

LiGuo Huang is a Ph.D.
student and research
assistant in the computer
science department at the
Center for Software En-
gineering at the Univer-

sity of Southern California (USC). She
received a bachelor’s degree in engineer-
ing management from HoHai University,
China, and a master’s degree in computer
science from USC. Her current research
interests focus on software system’s
Schedule/ Cost/Schedule-Cost-Quality as In-
dependent Variable process model and eco-
nomic-driven software engineering. She
was an Honored Student of JiangSu
Province awarded by the Education
Committee of JiangSu Province, China,
an Honored Student of Hohai University,
and was awarded the Outstanding
Academic Achievement Award at USC.

University of Southern California
Computer Science Department
Los Angeles, CA 90089
Phone: (213) 740-6505
Email: liguohua@usc.edu

